← Back
The Three Body Simulation
Solutions approximated with Runge-Kutta method and state augmentation
The 3-Body System
\[ \begin{aligned} \ddot{\boldsymbol{r}}_1 &= -Gm_2\frac{\boldsymbol{r_1}-\boldsymbol{r_2}}{|\boldsymbol{r_1}-\boldsymbol{r_2}|^3} -Gm_3\frac{\boldsymbol{r_1}-\boldsymbol{r_3}}{|\boldsymbol{r_1}-\boldsymbol{r_3}|^3}\\ \\ \ddot{\boldsymbol{r}}_2 &= -Gm_1\frac{\boldsymbol{r_2}-\boldsymbol{r_1}}{|\boldsymbol{r_2}-\boldsymbol{r_1}|^3} -Gm_3\frac{\boldsymbol{r_2}-\boldsymbol{r_3}}{|\boldsymbol{r_2}-\boldsymbol{r_3}|^3}\\ \\ \ddot{\boldsymbol{r}}_3 &= -Gm_1\frac{\boldsymbol{r_3}-\boldsymbol{r_1}}{|\boldsymbol{r_3}-\boldsymbol{r_1}|^3} -Gm_2\frac{\boldsymbol{r_3}-\boldsymbol{r_2}}{|\boldsymbol{r_3}-\boldsymbol{r_2}|^3} \end{aligned} \]
Right-click on the canvas and select
"Save image as..."
to download a snapshot.
Earth Mass:
Neptune Mass:
Alien Mass:
Click to start simulation
Reset Simulation
Simulation Speed:
5
Month: 1